De Rus Roman Andreev kwam als winnaar uit de bus in de tweede editie van het Wereldkampioenschap Hacken van Facebook. Sinds vorig jaar organiseert Facebook de Hacker Cup, dat is een jaarlijkse programmeerwedstrijd waar iedereen aan kan deelnemen. Dit jaar schreven zich 8.000 programmeurs uit 150 landen in. De vijfentwintig hackers die als beste uit […]


Hoe heeft technologie een impact op je business?
Ontvang elke week het zakelijk IT-nieuws rechtstreeks in je inbox!



De Rus Roman Andreev kwam als winnaar uit de bus in de tweede editie van het Wereldkampioenschap Hacken van Facebook.

Sinds vorig jaar organiseert Facebook de Hacker Cup, dat is een jaarlijkse programmeerwedstrijd waar iedereen aan kan deelnemen. Dit jaar schreven zich 8.000 programmeurs uit 150 landen in. De vijfentwintig hackers die als beste uit de voorrondes kwamen, streden afgelopen zaterdag voor de titel in het hoofdkantoor van de sociale netwerksite.

Algoritmes
De deelnemers kregen elk drie programmeeruitdagingen voorgeschoteld waarop ze zo snel mogelijk, met een limiet van drie uur, een algoritmische oplossing voor moesten schrijven. De programmeurs werden beoordeeld op doeltreffendheid en snelheid.

De eerste plaats, waar een geldprijs van 5.000 dollar bij hoort, ging naar de Rus Roman Andreev. Hij deed er een uur en vier minuten over om een oplossing voor een moeilijk vraagstuk te schrijven. De Amerikaan Tomek Czajka was één minuut langzamer en eindigde tweede. Hij krijgt 2.000 dollar van Facebook. Op de derde plaats, goed voor 1.000 dollar, stond net als vorig jaar de Chinees Tiancheng Lou.

Voorbeeldvraagstuk
Voor wie overweegt om zich in te schrijven voor de Hacker Cup 2013 heeft Facebook een voorbeeldvraagstuk vrijgegeven. Dat vind je op de volgende pagina. Heb jij het in je?

Party Time
You"re throwing a party for your friends, but since your friends may not all know each other, you"re afraid a few of them may not enjoy your party. So to avoid this situation, you decide that you"ll also invite some friends of your friends. But who should you invite to throw a great party?

Luckily, you are in possession of data about all the friendships of your friends and their friends. In graph theory terminology, you have a subset G of the social graph, whose vertices correspond to your friends and their friends (excluding yourself), and edges in this graph denote mutual friendships. Furthermore, you have managed to obtain exact estimates of how much food each person in G will consume during the party if he were to be invited.

You want to choose a set of guests from G. This set of guests should include all your friends, and the subgraph of G formed by the guests must be connected. You believe that this will ensure that all of your friends will enjoy your party since any two of them will have something to talk about…

In order to save money, you want to pick the set of guests so that the total amount of food needed is as small as possible. If there are several ways of doing this, you prefer one with the fewest number of guests.

The people/vertices in your subset G of the social graph are numbered from 0 to N – 1. Also, for convenience your friends are numbered from 0 to F – 1, where F is the number of your friends that you want to invite. You may also assume that G is connected. Note again that you are not yourself represented in G.

Input
The first line of the input consists of a single number T, the number of test cases. Each test case starts with a line containing three integers N, the number of nodes in G, F, the number of friends, and M, the number of edges in G. This is followed by M lines each containing two integers. The ith of these lines will contain two distinct integers u and v which indicates a mutual friendship between person u and person v. After this follows a single line containing N space-separated integers with the ith representing the amount of food consumed by person i.

Output
Output T lines, with the answer to each test case on a single line by itself. Each line should contain two numbers, the first being the minimum total quantity of food consumed at a party satisfying the given criteria and the second the minimum number of people you can have at such a party.

Constraints
T = 50
1 ≤ F ≤ 11
F ≤ N-1
2 ≤ N ≤ 250
N-1 ≤ M ≤ N * (N – 1) / 2
G is connected, and contains no self-loops or duplicate edges.
For each person, the amount of food consumed is an integer between 0 and 1000, both inclusive.